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ABSTRACT 

Abstract— The ability to classify track conditions has become a critical issue in the railway 
industry, as delayed detection or unaddressed adverse track conditions can profoundly 
impact railway safety. Current track maintenance primarily relies on manual inspections 
and specialized monitoring vehicles, which are constrained by their inspection frequency. 
Deploying models that correlate vehicle dynamic responses with track conditions in in-
service trains could significantly enhance fault detection. However, existing studies utilizing 
machine learning approaches are notably limited in capturing complex time-series 
information from vehicle dynamic responses, especially when the data are derived from 
real measurements rather than simulations. To address these challenges, we propose the 
application of GoogleNet and Gramian Angular Summation Field (GASF) transformation for 
classifying track conditions using vehicle dynamic responses. For comparison, we will 
demonstrate the limitations of traditional machine learning approaches, specifically 
Logistic Regression and XGBoost, where only the standard deviation and peak value are 
extracted as features. Subsequently, we propose our approach using the GoogleNet 
architecture, combined with GASF to transform the time-series data into image 
representations. Our proposed model achieves high accuracy, in classifying vertical and 
lateral track conditions, significantly outperforming the machine learning model. The 
results of this study demonstrate that our proposed method can learn complex nonlinear 
features, and make accurate classifications. Additionally, the study highlights the inability 
of the machine learning model, to classify track conditions accurately, and provides 
evidence that standard deviation and peak value are insufficient as features for complex 
systems like vehicle dynamic responses. 

KEYWORDS vehicle dynamic response, googlenet, gramian angular summation field, 
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INTRODUCTION 

Adverse track conditions, such as vertical and lateral adversity, can 

significantly impact vehicle safety and passenger comfort by causing increased 

vibration and instability (Liu et al., 2020). A subtle defect on the track even minor 

ones may result in severe adverse outcomes for the train running at high velocity. 

Maintaining track conditions is crucial for railway safety. Currently, the process for 

maintaining these conditions involves preventive maintenance, which is commonly 

conducted through manual inspection and specialized track-monitoring vehicles. 

However manual inspection cannot serve as the primary tool for detecting rail 

damage, as it is conducted based on a predetermined schedule or in response to 

reports of existing damage. Such delayed responses can result in deferred repairs, 

potentially leading to undesirable incidents. On the other hand, modern track-

monitoring vehicles are equipped with advanced sensors, including lasers, sensitive 

accelerometers, gyroscopes, and GPS. Despite this technological sophistication, the 

data collected are used to identify track irregularities based solely on predefined 

geometry thresholds (Karunianingrum & Widyastuti, 2020), which may not 

accurately reflect the actual vehicle responses on the track. Several approaches have 

been undertaken to identify track conditions based on the dynamic response of train 

vehicles. For instance (Koziol, 2016; Tsunashima & Hirose, 2022) employed a 

time-frequency analysis approach, specifically using wavelet transform, to analyze 

car body acceleration data and its correlation with track geometry.  With the 

advancement of information technology, electronics, and the Internet of Things 

(IoT), sensors installed on train vehicles generate data that can be utilized for 

maintenance purposes and fault detection. One such application is the identification 

of track irregularities. Several studies have employed this data-driven approach to 

develop machine-learning models for classifying track irregularities based on 

acceleration data (De Rosa et al., 2021; Hoang & Kang, 2019; Tsunashima, 2019; 

Wikaranadhi et al., 2024). Generally, the detection of track irregularities is 

conducted using dynamic response data obtained from simulations. Standard 

deviation and peak values calculated from acceleration are typically used as 

features, with track geometry that is often predetermined and may not accurately 

reflect actual track conditions. However, in other domains, research on fault 

detection has further explored alternative approaches, such as deep learning (Hong 

et al., 2020; Ma et al., 2022). Deep learning offers several advantages over 

frequency analysis or traditional machine learning. Among these advantages are its 

suitability for handling unstructured data, such as the vibration data generated by 

the dynamic response of trains. Additionally, deep learning automates the process 

of feature extraction (Wicaksono et al., 2019). 

In this paper, we will utilize a variant of deep learning architecture called 

GoogleNet. Using GoogleNet allows us to create a network that is both deep and 

wide while maintaining constant computational resources (Seibold et al., 2022). 

Additionally, GoogleNet has been successfully used in the fault detection domain 

(Hatami et al., 2018). We will also transform our vehicle dynamic response data 

from its time series into a 2D image representation using the GASF method (Wang 

et al., 2023). This method enables us to convert temporal data into 2D images 

without sacrificing the temporal relations of the data (Li et al., 2020; Yang et al., 
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2024). Using image representations not only increases the interpretability of the 

data but also helps us to overcome the problem of imbalanced data, which is 

inherently present in real-world datasets. 

 

RESEARCH METHODS 

The dataset was obtained from special inspections of track vehicles. The 

acquired data will undergo preprocessing in two stages. The first stage involves 

labeling the data according to QN1 conditions, guided by the UIC 518 criteria. The 

second stage involves feature development, which branches into two parts. The first 

part focuses on feature extraction, specifically the standard deviation and peak 

value, to create features for our Linear Regression and XGBoost models. The 

second part, for our GoogleNet model, involves time-series transformation using 

the Gramian Angular Summation Field. 

Datasets 

Our Vehicle dynamic response and track irregularities data were acquired 

from a sensor mounted on an INKA special vehicle Fig. 1. During its operation on 

a track near Blitar on November 17, 2021 in track with normal gauge 1067 mm and 

at speed of 97 km/hours 

 

 
Fig. 1 INKA Track Monitoring Vehicle 

 

Several variables related to the vehicle’s dynamic response, used in the 

classification process, were recorded. These variables include lateral acceleration, 

and vertical acceleration. For track profile data, the recorded information includes 

both left and right track profiles, as well as left and right track alignment. 

The data collected from the special inspection vehicle comprises track 

geometry profiles and vehicle dynamic responses. Track conditions measurements 

can be obtained through the dynamic response of the vehicle, using acceleration 

measurements. Inspection vehicles are equipped with accelerometers to capture 

vertical and lateral dynamic responses. These accelerometers are installed on the 

carbody, bogie frame or wheelsets. The data from the accelerometers can be utilized 

to analyze track conditions in the range D1. The choice to use accelerometer data 

from the carbody is driven by the primary goal of developing a model and reading 

data from accelerometers installed on in-service trains Fig. 2. 
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Fig. 2 Principle of inertia-based track measurement system 

 

Three wavelength categories for track adverse condtion, D1, D2, and D3, are 

considered, as defined in Table 1 

 

Table 1. Track Irregularities Wavelength Range 

Catego

ry 

Wavelength Type 

D1 3 𝑚 <  𝜆 ≤ 25 𝑚  

D2 25 𝑚 <  𝜆 ≤ 70 𝑚  

D3 70 𝑚 <  𝜆 ≤ 150 𝑚 

70 𝑚 <  𝜆 ≤ 200 𝑚 

Vertical 

Lateral 

 

Particular focus must be given to the D1 wavelength range of track adverse 

condition, as they have the potential to impact operational safety; for, irregularities 

within the D2 and D3 ranges are primarily associated with passenger comfort, as 

outlined in the EN13858:2019. 

Method 

There are three main processes involved in training our deep learning model: 

the first involves data preparation, including label and feature development; the 

second involves model architecture design; and the third is model training. 

Label Development 

The first step begins with labeling of geometry data, labeling process will 

encompass vertical and lateral data This data is refined based on the D1 

irregularities' spatial wavelength range, spanning 3 to 25 meters, as outlined in EN 

13848 using band-pass filter. Corresponding to an operating speed of 97 km/h, this 

wavelength range is equivalent to a frequency range between 1.07 and 8.98 Hz. 

furthermore, the data will be segmented using a random start-slicing method, where 

the starting point of the data is chosen randomly, as illustrated in Fig. 3. 
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Fig. 3 Random Start Slicing 

 

The sliding window size will consist of 400 points, representing a 100-meter 

track section, with each data point spaced 0.25 meters apart. Table 2 shows the 

detailed parameters used in this process. 

 

Table 2. Random Start Slicing Parameters 

Paramet

er 

KM 124 KM 125 

Data 

Spacing 

0.25 m 0.25 m 

Window 400 

points 

400 

points 

Section 100 m 100 m 

Min 

Value 

180.50 0 

Max 

Value 

999.75 499.50 

Iteration 7000  

Speed 97 km / hours 

 

We will iterate the slicing process for 7000 iterations to maximize the results. 

Subsequently, a filtering process will be implemented to remove duplicate data 

from our result sets. After sets of segmented data are acquired, the standard 

deviation and peak value for each segment is calculated as the threshold to 

determine the track quality index in each segment. The limit values for the lateral 

level and vertical level are consistent with the QN1 limit specified by UIC 518. A 

track section is classified as 'Class 0' (indicating acceptability or normal) if both its 

standard deviation and peak value are within the prescribed limits for the respective 

feature. Conversely, it is designated as 'Class 1' (signifying unacceptability or 

adverse condition) if both the standard deviation and peak value exceed these limits. 

Table 3 shows standard deviation values as provided by UIC518. 

 

Table 3. Standard Deviation Reference 

Variabl

e QN 1 

Limit Value 

Vertical 

Limit 

Value 

Lateral 
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Standard 

Deviatio

n  

1.8 mm 1.2 mm 

Peak 

Value 

8.0 mm 8.0 mm 

 

Table 4 shows the results of the labeling process for lateral and vertical track 

conditions. 

Table 4. Labeling Results 

Type Track adverse 

condition (class 

1) 

Track Good 

Condition (class 

0) 

Vertic

al 

3509 715 

Latera

l 

1555 2669 

 

Feature Development 

Concerning feature data, we also implement a windowing technique to 

segment our data, as depicted in Fig. 4 

 

 
Fig. 4 Chunk the data using the selected window 

 

The selected window size must correspond to the dimensions of the 

previously defined label, ensuring alignment between the input feature data and the 

label data. For the features used in our Logistic Regression and XGBoost models, 

we begin by calculating the standard deviation and determining the peak value for 

each window of data. 

Gramian Angular Summation Field encoding of dynamic response data 

For the features of our GoogleNet model the subsequent step, after 

windowing, involves the application of Piecewise Aggregation Approximation 

(PAA). This technique serves to diminish the dimensionality of time series data. It 

operates by segmenting the time series into equal-sized portions, each of which is 

then represented by its mean value. This method effectively truncates the length of 

the time series, which is crucial for reducing the dimensions of the Gramian 

Angular Summation Field (GASF) matrix. We proceeded to transform the feature 

data into a Gramian Summation Angular Field (GSAF) matrix. Suppose 

observations of 𝑛 time series data given by 𝑋 =  {𝑥1, 𝑥2,  𝑥3, . . . , 𝑥𝑛}, rescale 𝑋 to 

fall between [-1,1] by using: 

  



Eduvest – Journal of Universal Studies 

Volume 5, Number 2, February, 2025 

 

Classification of Vertical and Lateral Track Irregularities using GoogleNet from 

Gramian Angular Summation Field Encoding  2974 

 𝑥̃𝑖  

=  
(𝑥𝑖 − 𝑚𝑎𝑥(𝑋)) + (𝑥𝑖 + 𝑚𝑎𝑥(𝑋))

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑋)
 

(1) 

 

In the second step, the rescaled values are transformed into polar coordinates. 

This is achieved by encoding the data value as the angular cosine and the temporal 

component as the radius, utilizing the following equation: 

 

 {∅ =  𝑎𝑟𝑐𝑐𝑜𝑠(𝑥̃𝑖), −1 < 𝑥̃𝑖 ≤ 1, 𝑥̃𝑖

∈ 𝑋̃ 𝑟 =  
𝑡𝑖

𝑁
, 𝑡𝑖 ∈ 𝑁  

(2) 

 

The (2) represents the time at 𝑖 and 𝑁 as a factor to regulate the span of the 

polar coordinate. The outcome derived from (2) possesses crucial characteristics. 

Firstly, the temporal relationship is maintained in the polar coordinates, as an 

increase in time results in the corresponding value being wrapped among various 

coordinate points. Second, the point becomes bijective monotonic at coordinate 

𝑥̃𝑖 ∈ [0, 𝜋]. After transformation applied Gramian matrix for each coordinate value.  

 

 𝐺 
= (〈 ∅1, ∅1〉 〈 ∅1, ∅2〉 ⋯ 〈 ∅1, ∅𝑛〉 〈 ∅2, ∅1〉 〈 ∅2, ∅2〉 … 〈 ∅2, ∅𝑛〉  
⋮ ⋮ ⋱ 
⋮  〈 ∅𝑛, ∅1〉 〈 ∅𝑛, ∅2〉 ⋯ 〈 ∅𝑛, ∅𝑛〉 ) 

 

(3) 

 

In the Gramian matrix author (Z. Wang et al., 2015) suggest a modified dot 

product operation, as the norm of each vector has been adapted to account for time 

dependency as shown in (3). Specifically: (i) The inner product computation 

involving two separate observations demonstrates a bias towards the more recent 

observation, as the norm increases with time; (ii) in calculating the inner product of 

observation with itself, the resulting norm exhibits bias as well. 

 

 𝐺 = ( 𝑐𝑜𝑠(∅1 + ∅1)  𝑐𝑜𝑠(∅1

+ ∅2) ⋯  𝑐𝑜𝑠(∅1

+ ∅𝑛)  𝑐𝑜𝑠(∅2

+ ∅1)  𝑐𝑜𝑠(∅2

+ ∅2) …  𝑐𝑜𝑠(∅2 + ∅𝑛)  
⋮ ⋮ ⋱ 
⋮   𝑐𝑜𝑠(∅𝑛 + ∅1)  𝑐𝑜𝑠(∅𝑛

+ ∅2) ⋯  𝑐𝑜𝑠(∅𝑛 + ∅𝑛) ) 

(4) 

 

Equation (4) illustrates the time series being transformed into a polar 

coordinate and finally into a GASF matrix. Subsequently, this matrix was converted 

into an image format as shown in Fig. 5, and Fig. 6 shows several examples of 

image representation resulting from GASF transformation. The image will serve as 

the input for the training data of our GoogleNet model. 

 



Eduvest – Journal of Universal Studies 

Volume 5, Number 2, February, 2025 

2975   http://eduvest.greenvest.co.id 

 

 
Fig. 5 Vertical Dynamic Response Data Transformation 

 

 
Fig. 6 Images from vehicle dynamic response 

 

Model Training 

We begin with Logistic Regression and XGBoost. For both methods, we 

perform downsampling on our label and feature data to create a balanced dataset. 

For vertical classification, we downsample to match class 0 track conditions, which 

consist of 715 data points. For lateral track condition classification, we downsample 

to match class 1 track conditions, which consist of 1,555 data points. 

For GoogleNet we also perform downsampling similar to the machine 

learning method to rebalance the dataset and We will setup our GoogleNet model 

according to [13]. All convolutions in the network, including those within the 

Inception modules Fig. 7, utilize rectified linear activation functions (ReLU). The 

network’s receptive field size is 256x256, and it processes greyscale color channels 

with mean subtraction. We will use “#3×3 reduce” and “#5×5 reduce” to refer to 

the number of 1×1 filters in the reduction layer applied before the 3×3 and 5×5 

convolutions, respectively. The pool projection column indicates the number of 1×1 

filters in the projection layer following the built-in max-pooling. All these reduction 

and projection layers also use rectified linear activation functions. 
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Our GoogleNet architecture has 5,971,889 trainable parameters. For both the 

machine learning and GoogleNet approaches, we use an 80:20 training and testing 

data split. To address our limited dataset, to train the GoogleNet model we employ 

cross-validation to obtain optimal hyperparameters. The optimal hyperparameters 

for vertical data are 55 epochs, batch size 32, learning rate 0.01, weight decay 0.815, 

and dropout rate 0.4. For lateral data, the best hyperparameters are 45 epochs, batch 

size 32, learning rate 0.01, weight decay 0.815, and dropout rate 0.4. We applied 

dropout to prevent overfitting, and weight decay to create a dynamic learning rate 

to improve convergence even. 

 

RESULT AND DISCUSSION 

Result metrics from Logistic Regression and the XGBoost method are shown 

in Table 5. 

 

Table 5. Logistic Regression And Xgboost Metrics 

Model clas

s 

Precisi

on 

Recal

l 

Accura

cy 

Log-Reg 

(Vertical) 

0 0.54 0.57 
0.54 

1 0.54 0.51 

XGBoost 

(Vertical) 

0 0.50 0.50 
0.50 

1 0.50 0.50 

Log-Reg 

(Lateral) 

0 0.54 0.12 
0.49 

1 0.48 0.89 

XGBoost 

(Lateral) 

0 0.52 0.45 
0.50 

1 0.48 0.56 

 

The metrics indicate that Logistic Regression and XGBoost are unable to 

classify track conditions effectively. The results for class 0 (good) and class 1 

(adverse) are no better than random guessing, as the accuracy is only 50%. As 

shown in Fig. 8, when we plot the relationship between the standard deviation and 

peak value calculated from the dynamic response, for vertical acceleration or lateral 

acceleration, the correlation is very weak, with a Pearson correlation coefficient of 

only 0.03. This suggests that simply calculating the standard deviation and peak 

value from the dynamic response is insufficient to classify track conditions 

accurately. 
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Fig. 7 (a) pair plot of standard deviation and peak value from vertical 

acceleration, (b) Standard deviation and peak value from lateral acceleration 

 

Cross-validation provides a method to obtain optimal hyperparameters for 

training our GoogleNet model. As shown in TABLE VII, we achieved a robust 

model for lateral and vertical classification with accuracies of 98% and 97%, 

respectively. For the vertical model, the recall for the positive class (adverse 

condition) is lower than the recall for the negative class (good condition), indicating 

that the model is less accurate in detecting adverse conditions compared to normal 

conditions. Despite this, the recall for adverse conditions is still above 90%, 

specifically 95%, demonstrating strong model performance. 

 

Table 6. Googlenet Model Vertical And Lateral Metrics 

Model clas

s 

Precisi

on 

Recal

l 

Accura

cy 

GoogleN

et 

(Vertical) 

0 0.96 0.99 

0.97 1 0.98 0.95 

GoogleN

et 

(Lateral) 

0 0.97 0.99 

0.98 1 0.99 0.97 

 

CONCLUSION 

Combining the GoogleNet model with the GASF method enables highly 

accurate classification of track conditions, as demonstrated by the metrics 

evaluation, which shows an accuracy above 95%. This proves that the GASF 

transformation effectively captures complex features from dynamic response data, 

allowing GoogleNet to perform feature extraction and classification successfully. 

In contrast, the machine learning models, Logistic Regression and XGBoost, were 

unable to learn the data effectively, resulting in only about 50% accuracy. This poor 

performance is also influenced by the feature extraction method we used—standard 

deviation and peak value from acceleration data—which is insufficient to represent 

the complexity of vertical and lateral dynamic responses. Additionally, the almost 

nonexistent correlation between the peak value and standard deviation in the 

acceleration data suggests that we need other features to better represent train 

dynamic responses. 
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