
How to cite:

Arifiansyah, F., & Handayati, Y. (2025). Analyzing Systemic Failures in
IT Incident Management: Insights from Post-Mortem Analysis. Journal
Eduvest. 5(4): 4260-4273.

 E-ISSN: 2775-3727

Eduvest – Journal of Universal Studies

Volume 5 Number 4, April, 2025

p- ISSN 2775-3735- e-ISSN 2775-3727

ANALYZING SYSTEMIC FAILURES IN IT INCIDENT

MANAGEMENT: INSIGHTS FROM POST-MORTEM

ANALYSIS

Faris Arifiansyah*, Yuanita Handayati

Institut Teknologi Bandung, Indonesia

Email : faris_arifiansyah@sbm-itb.ac.id, yuanita@sbm-itb.ac.id

ABSTRACT

The reliability of IT systems is critical for fintech companies, where service disruptions can

lead to significant financial losses and reputational damage. Despite established incident

management frameworks, recurring IT incidents persist, indicating systemic weaknesses in

prevention, detection, and response. This study aims to identify the root causes of significant

IT incidents, assess detection and resolution challenges, and provide actionable

recommendations to enhance incident management. Using a qualitative approach, the

research analyzed 26 post-mortem reports from an Indonesian fintech company (August

2023–2024), employing thematic analysis to categorize systemic failures. Findings revealed

that 80% of incidents stemmed from internal changes, primarily due to inadequate testing,

weak deployment controls, and misconfigured production settings, while 69% lacked

proactive alerts, delaying detection. Incident response inefficiencies, such as slow

escalations and insufficient post-fix monitoring, further prolonged resolution times. The

study highlights the need for stricter change validation, standardized alerting mechanisms,

and automated deployment checks to mitigate disruptions. These insights offer practical

guidance for fintech and technology companies to reduce incident frequency, improve

detection capabilities, and optimize response efficiency. The research contributes to the

broader IT incident management field by empirically validating failure patterns in fintech

environments and proposing data-driven solutions. Future research could explore AI-driven

automation and organizational factors influencing incident handling.

KEYWORDS IT Incident Management, Incident Prevention, Incident Detection,

Fintech, Root Cause Analysis, System Reliability

This work is licensed under a Creative Commons Attribution-ShareAlike

4.0 International

Article Info:

Submitted: 04-04-2025 Final Revised:

19-04-2025

Accepted: 26-05-2025 Published: 30-05-2025

http://sosains.greenvest.co.id/index.php/sosains
https://creativecommons.org/licenses/by-sa/4.0/

Faris Arifiansyah, Yuanita Handayati

Analyzing Systemic Failures in IT Incident Management: Insights from Post-Mortem
Analysis 4261

INTRODUCTION

Mobile apps have become essential to modern life, streamlining everything

from communication and task management to payments and entertainment.

Technology companies are leading this digital revolution. These innovative

organizations develop and deliver the software, hardware, and services that power

our digital lives. However, despite the convenience and benefits they offer,

technology companies face the challenge of achieving zero incidents. An

Information Technology (IT) incident refers to an unexpected event or unplanned

interruption that disrupts business operational processes or reduces the quality of

an IT service (Standardization, 2018). The complex nature of modern technology

systems and the constant introduction of new products and features make it more

difficult to eliminate disruptions entirely (Z. C. et al., 2020).

In recent years, numerous IT incidents have highlighted the importance of

service reliability. For example, the CrowdStrike incident in July 2024 caused

widespread disruptions as thousands of commercial flights globally were canceled

due to a faulty update released by CrowdStrike that triggered the Blue Screen of

Death (BSOD) in Windows OS computers. This incident resulted in estimated

losses between US$300 million and US$1 billion (Carpenter, 2024), and the

company's stock price fell more than 15% in the following days (Saul, 2023).

Another notable incident occurred in October 2021 when Facebook and its affiliated

services, such as WhatsApp and Instagram, experienced a global outage that lasted

nearly 6 hours. The outage was caused by a misconfiguration, leading to a

significant drop in Facebook's share price by almost 5% (Brown, 2018). It is

estimated that the company lost approximately US$79 million in ad revenue during

the outage (Lee, 2020). These incidents have demonstrated the significant

consequences of disruptions, including financial losses, reputational damage, and

customer dissatisfaction.

The annual outages analysis report from Uptime Institute shows that the

overall frequency of publicly reported outages from 2019 to 2022 remains high

despite technological advancements. There is no sign of decreasing, even though

there is an improvement in handling the impact of the outages (Simon, 2023). This

trend indicates that the fundamental risk of disruptions still persists. From an

industry perspective, the financial impact of server downtime varies across different

sectors. The banking and finance industry experiences the biggest impact from a

server downtime. It incurs an estimated loss of $9.3 million per hour of downtime

(ITIC, 2017) underscoring the importance of incident prevention and response

efficiency.

The fintech industry has experienced rapid growth in recent years (S. K. et

al., 2018), fueled by increasing digital financial transactions. However, fintech

firms also face increasing risks of IT disruptions due to their reliance on high-

frequency transaction processing, microservices architectures, and third-party

integrations (Efunniyi et al., 2022). While research on IT incident management has

explored outage trends, failure patterns, and strategies for improving deployment

reliability, there is still a lack of in-depth studies focusing on incident root causes,

detection gaps, and response behaviors in fintech environments.

Eduvest – Journal of Universal Studies

Volume 5, Number 4, April, 2025

4262 http://eduvest.greenvest.co.id

Chen et al. (2020) examined incident management challenges in a large-

scale cloud system, identifying key weaknesses in impact estimation, service

dependency mapping, and the triaging process. Their study found that incorrect

incident classification and frequent reassignment significantly prolonged resolution

times, with some incidents being transferred multiple times before reaching the

appropriate team. While this research provides valuable insights into post-incident

handling, it primarily focuses on large-scale cloud service providers rather than

organizations operating in fintech environments. Additionally, its emphasis remains

on optimizing incident response rather than addressing systemic root causes that

contribute to recurring failures.

Aceto et al. (Aceto et, 2018) conducted a comprehensive survey of internet

outages, analyzing causes related to network failures, external attacks, and cloud

infrastructure issues. However, their study focused on industry-wide failures rather

than internal enterprise IT incidents. Similarly, (2016) and (Kapel, 2023)

investigated incident prevention strategies through structured change management,

proposing predictive models to identify high-risk changes before deployment.

Another study analyzed challenges in identifying incident-inducing changes,

highlighting the need for improved traceability, data quality, and postmortem

practices to enhance change failure analysis (E. Kapel D. Spinellis, and A. Van

Deursen, 2024)While these studies emphasize prevention, they focus less on post-

incident detection and response mechanisms, which this study aims to address.

Gunawi et al. (2016) examined cloud service outages, highlighting failure patterns

in large-scale distributed systems. However, research on cloud-focused failures

often lacks insights into application-layer failures and the organizational processes

governing incident management.

This research aims to bridge these gaps by conducting an in-depth post-

mortem analysis of significant incidents in a fintech company. Unlike previous

studies, this study investigates the full incident lifecycle, from root cause

identification to detection gaps and resolution behaviors. The objective is to

uncover recurring failure patterns and provide practical recommendations that

technology-driven organizations can adopt to enhance incident prevention,

detection, and response. By analyzing real-world post-mortem reports, this study

provides data-driven insights that can help organizations improve their IT incident

management strategies, particularly in high-transaction environments like fintech.

METHOD

This study analyzed 26 major IT incidents at a fintech company in Indonesia

that were captured in post-mortem documents from August 2023 to August 2024.

These documents were retrieved from the company’s internal knowledge

management system, where incident reports are archived. Post-mortems were

selected as the data source because they contain factual and structured information

compiled by engineering teams immediately after an incident occurs. Unlike

interviews or surveys, which personal biases or memory recall limitations may

influence, post-mortem reports provide a historical record of incidents, including

detection timelines, root cause analysis, and corrective actions. This structured

documentation makes them suitable for identifying systemic patterns across

Faris Arifiansyah, Yuanita Handayati

Analyzing Systemic Failures in IT Incident Management: Insights from Post-Mortem
Analysis 4263

multiple incidents. Each post-mortem follows a standardized format, capturing key

attributes of the incident. Table 1 outlines the key details available in the reports,

which form the basis of the study’s analysis.

Table 1. Details Captured in Post-Mortem Reports

Item Name Description

Incident Date Date when the incident started

Title Incident title summarizing the issue

Squad Owner

The team that owns the incident and post-mortem

document decided based on the cause that triggers the

incident

GMV Impact Estimated financial loss in gross merchandise value (GMV)

Revenue Impact Estimated direct revenue loss due to the incident

Time Incident Started Exact timestamp of when the disruption began

Time Incident Detected
When the issue was first identified, whether via automated

alerts, manual monitoring, or customer complaints

Time Incident Resolved When the incident was fully mitigated

Time Post-Mortem

Closed

When all corrective actions were completed and

documented

Root Cause Category
Classification of the primary failure category, agreed upon

by stakeholders

Incident Summary
Brief explanation of what occurred and how the issue was

mitigated

Impact Description of the functional disruption and affected users

Trigger The initiating event or action that caused the incident

Detection Explanation of how the issue was identified

Root Cause Analysis
Detailed analysis using the 5 Whys method to trace the

underlying failure

Timeline
Chronological sequence of key events and actions from

detection to resolution

Resolution & Recovery Actions taken to mitigate and resolve the issue.

Corrective & Preventive

Measures

List of actions aimed at preventing recurrence, categorized

into corrections, preventions, and improvements.

Lessons Learned
Reflection on what went well, what failed, and unexpected

factors that influenced the outcome

Related Squads List of teams affected by the incident

To systematically extract meaningful insights from these post-mortems, this

study applies thematic analysis, a widely used qualitative research method for

identifying patterns in textual data. It involves a process where researchers engage

with the data to identify and develop themes that emerge from the qualitative data

set (Varpio, 2020). Following the methodology outlined in (Clarke, 2006), this

study follows a structured process with six key phases.

The first phase is familiarization with the data, where researchers review all

post-mortem documents to understand incident contexts. Next, initial codes (tags)

are generated, focusing on failure patterns, detection gaps, and response

inefficiencies. To avoid confusion between “code” in qualitative research and

“code” in software engineering, this study uses the term “tagging” instead of

Eduvest – Journal of Universal Studies

Volume 5, Number 4, April, 2025

4264 http://eduvest.greenvest.co.id

“coding.” Tagging was performed using Taguette, an open-source qualitative data

analysis tool, to streamline the annotation process.

After tagging was completed, the data was exported and structured for

further analysis. Although this step is not explicitly listed in the original framework

outlined in (Clarke, 2006)This study introduced it to ensure a consistent

representation of incident factors across all cases. Each tag was limited to a single

occurrence per incident to prevent the overrepresentation of frequently discussed

issues in individual reports.

The next phase involved searching for themes and grouping similar issues

to identify broader systemic patterns in IT failures. These themes were then

reviewed and refined to ensure they accurately represented the underlying data.

Finally, themes were defined and named, classifying root causes and response

inefficiencies. This structured process ensures that the findings are based on

empirical evidence rather than anecdotal observations.

RESULT AND DISCUSSION
Root Causes of Major IT Incidents

The analysis of 26 post-mortem documents revealed that internal changes,

such as new feature deployments, system migrations, and configuration

modifications, triggered 80% of major incidents. This indicates that failures mainly

originate from software development, deployment, and operational processes rather

than external factors like infrastructure failures or unexpected traffic surges. Several

recurring systemic issues contributed to incidents across multiple root cause

categories. Fig. 1 summarizes the most common failure patterns identified in the

analysis.

The most frequently observed issue was inadequate testing, contributing to

10 out of 26 incidents. Many deployments lacked regression testing, leading to

failures in existing critical functionality. Additionally, incomplete test coverage

resulted in undetected failures that only surfaced in production environments.

Deployment deficiencies were the second most frequent cause, accounting for 6

incidents. In some cases, manual deployment change logs contained errors or

outdated information, leading to unreviewed changes being applied. Additionally,

a lack of automated deployment validation resulted in production environments

missing essential configurations.

Figure. 1 Systemic issues contributing to IT incidents

Faris Arifiansyah, Yuanita Handayati

Analyzing Systemic Failures in IT Incident Management: Insights from Post-Mortem
Analysis 4265

Insufficient change review processes led to multiple incidents where

modifications were merged or applied without proper peer or product owner

approvals. Similarly, misconfigured or missing configurations caused system

failures, as engineers often configured settings in staging but forgot to use them in

production. Change execution deficiencies and a lack of standardized migration

strategies also contributed to incidents. Teams frequently failed to actively monitor

key metrics after changes, leading to delays in identifying failures. Furthermore,

due to a large amount of work during infrastructure migration initiatives, each team

executed their migrations independently with no guidance from the taskforce team

that drives the project, leading to knowledge gaps and unexpected failures. Lastly,

ownership ambiguities and communication failures also contributed to several

disruptions where third-party IP changes were not communicated effectively

between internal teams, leading to integration failures.

In addition to these systemic issues, several code and configuration-related

incidents stemmed from unique causes. The incomplete validation logic caused two

incidents, leading to duplicate database entries that triggered unintended feature

behaviors. Another incident resulted from misunderstood function logic, where

incorrect assumptions about how a function interacted with other system

components led to unintended consequences. A performance-related incident was

caused by a database indexing issue, where queries lacked proper indexing, causing

significant slowdowns under high traffic conditions. Cache-related failure was also

identified, where there was a bug in the cache implementation that excessively

increased traffic to the authentication server by continuously requesting new tokens,

ultimately overwhelming the system. In another case, an incident was caused by a

manual certificate renewal process where the team was unaware that Kubernetes

SSL certificates required manual updates, leading to a system integration failure

with a third-party provider.

Incident Detection and Response Gaps

The post-mortem documents provide detailed insights into incident

detection and resolution times. Each post-mortem contains Time to Detect (TTD)

and Time to Resolution (TTR) data, allowing for a quantitative analysis of how long

incidents remained undetected and how quickly they were mitigated once

identified. Table 2 summarizes these times across all major incidents.

Table 2. Time to Detect (TTD) and Time to Resolution (TTR) for Major

Incidents

Incident

Number

TTD (In

Minutes)
TTR (In Minutes)

Total Incident

Duration (In

Minutes)

2024080704 0 14 14

2024080501 5583 5110 10693

2024071101 24529 1371 25900

2024070301 870 370 1240

2024070202 11 78 89

2024070102 148 311 459

2024052901 6288 30519 36807

Eduvest – Journal of Universal Studies

Volume 5, Number 4, April, 2025

4266 http://eduvest.greenvest.co.id

2024042201 11429 10085 21514

2024042101 254 6 260

2024031903 7401 49 7450

2024022901 0 175 175

2024021901 5464 306 5770

2024020601 7260 300 7560

2024013001 815 30 845

2024011801 40839 8664 49503

2023112401 0 96 96

2023110301 348 60 408

2023102601 1090 14 1104

2023101901 31 30 61

2023101702 8562 1939 10501

2023101701 790 170 960

2023092202 17 173 190

2023092102 11 28 39

2023091301 16 12 28

2023081501 6859 184 7043

2023081001 75 60 135

Average 4950 2314 7263

The results show that the Mean Time to Detect (MTTD) was 82.5 hours,

while its Mean Time to Resolution (MTTR) was 38.5 hours. These values are

substantially higher than industry benchmarks. A 2023 survey on business outages

found that 44% of companies reported an MTTD of 30 minutes or less, while only

21% exceeded 60 minutes. For resolution times, 60% of organizations resolved

incidents within 30 minutes, while only 34% took longer than one hour [18].

Compared to these figures, the studied fintech company’s MTTD is significantly

longer, extending incident durations and business disruptions.

A key contributing factor to prolonged detection times is the lack of

automated alerts for business-critical metrics and system health indicators. The

analysis revealed that 18 out of 26 incidents (≈69%) were detected through manual

means, such as customer complaints, manual employee checks, or third-party

partners, rather than through proactive alerting systems. Further investigation into

post-mortem documents, particularly the Detection section, showed that many

incidents remained undetected because of lacked automated alerts on critical

indicators such as: (1) Transaction success rate drops (for specific products,

payment methods, or partners). (2) CPU utilization spikes. (3) Application crashes.

(4) User registration or visit declines. To illustrate this, Table 3 presents a sample

of incidents that lacked automated alerts, showing how they were eventually

detected.

Faris Arifiansyah, Yuanita Handayati

Analyzing Systemic Failures in IT Incident Management: Insights from Post-Mortem
Analysis 4267

Table 3. Sample Incidents with Missing Alerts
Incident

Number
Post-Mortem Excerpt Indicating Missing Alert Alert Category

2024070202

The Auth server CPU was impacted due to the

increase in load, but had no CPU alerting, making

it harder to investigate

High CPU

Utilization

2024042201

Detection: Complaint from users

…

Some users are getting stuck on a page in the app

when trying to open the QRIS feature

App Crash / Stuck

2024013001

Detection: User complains through our CS, and

CSM reports to us through Slack

…

The user cannot create a transaction for Product A

in the platform

Transaction Drop

for Specific

Product

2023101702

Detection: The Product team first detected the

issue when getting complaints from users

…

Impact: Opportunity lost to use Payment Method

A as the payment method

Transaction Drop

for Specific

Payment Method

2023101701
Detection: A support channel report said several

Partner A products were closed.

Transaction Drop

for Specific

Partner

2023081501

Detection: Raised by the payment team

…

Impact: Product B transaction with Payment

Method B dropped to zero for 5 days.

Transaction Drop

for Specific

Payment Method

2024070102

Detection: Complaint from users

…

Impact: Customers can’t transact Electricity

Prepaid, Property tax, and Vehicle Tax products

that are supplied by Partner X

Transaction Drop

for Specific

Partner

2024071101

Detection: Got a report from the product team and

business team

…

Impact: The User is unable to open the app from

push notification. Tapping it does nothing and

does not redirect to the respective screen in the

app.

Visit Drop from

Specific Channel

2024052901

Detection: We got some reports from our users

that they can’t do QRIS registration

…

App version V will crash when the user does

QRIS registration.

App Crash /

Stuck, User

Registration Drop

The most common problem was missing alerts for drops in transaction

success rates. Eleven of the 18 missing alerts (61%) were related to transaction

drops for specific product types (like phone credit or e-wallets), partners or

suppliers, payment methods (like bank virtual accounts or paylater), or a

Eduvest – Journal of Universal Studies

Volume 5, Number 4, April, 2025

4268 http://eduvest.greenvest.co.id

combination of these factors. A deeper analysis revealed that these alerts were never

configured but misconfigured or inconsistently applied. The primary challenge

stemmed from the microservices architecture, where each product type operates on

its own microservice with custom metrics, requiring separate alert configurations

for each. The absence of a standardized alerting policy resulted in many critical

alerts being overlooked. As a result, detection often relied on manual monitoring or

user complaints, contributing to longer detection times and prolonged incident

durations.

While detection delays contributed to prolonged incidents, the analysis also

revealed inefficiencies in the response process. Even when incidents were

identified, resolution times remained high. The time to resolve the incident (TTR)

varied significantly across cases. While some incidents were mitigated within

minutes, others remained unresolved for multiple days due to response

inefficiencies. Table 4 highlights incidents where response inefficiencies led to

extended service disruptions.

Table 4. Incident Response Issues
Incident

Number
Tags Explanation

2024052901
Lack of Post-Fix

Monitoring

After deploying the initial fix in version V (on the

same day the issue was detected), the team did not

actively monitor crash metrics to verify its

effectiveness. Another engineer eventually flagged

the recurring crash 11 days after the 50% rollout

began.

2024042201
Delayed Incident

Reporting

The incident was detected on April 18, 2024, but the

incident report was only created on April 22, 2024,

leading to a four-day delay.

2024011801
Slow Incident

Resolution

The anomaly was reported on January 12, 2024, but

the bug was only identified on January 16, 2024,

after a four-day delay. It highlights a significant

delay in identifying the root cause after the detected

issue. This suggests inefficiencies in the debugging

or escalation process that could have prolonged the

incident resolution

2024080501

Delayed

Resolution Due

to Dependency

on External

Partner

The resolution process was delayed because it relied

on adjustments from the external partner. Although

the team acted promptly by regrouping and

escalating the issue, the dependency on the partner’s

system changes prolonged the resolution process

2023101702

Delayed Incident

Reporting, Slow

Incident

Resolution

There was a two-hour delay in escalating the issue

from the customer support to the incident support

channel. After the war room was created, there was

a delay in deploying the fix, which could have been

expedited. The time gap between identifying the

root cause and deploying the fix suggests room for

improvement.

2024071101
Delayed Incident

Reporting,

The issue was detected at 5:17 PM on July 11, 2024,

but it was only reported to the incident channel at

Faris Arifiansyah, Yuanita Handayati

Analyzing Systemic Failures in IT Incident Management: Insights from Post-Mortem
Analysis 4269

Prolonged

Testing and

Deployment

Process

8:53 PM. The fix was also merged at 10:32 AM on

July 12, 2024, but the app hotfix was only released

on the Google Play Store at 4:08 PM, almost six

hours later.

2024070301
Slow Incident

Resolution

The finance team reported the issue on July 3, 2024,

at 10:55 AM, but the fix was only deployed and

tested by 5:05 PM on the same day, over six hours

after detection.

2024021901
Delayed Incident

Reporting

The issue was reported in the customer support

channel at 9:14 AM, but it was only reported as an

incident at 1:18 PM, nearly four hours later

2024020601
Slow Incident

Resolution

The anomaly affecting Product A transactions was

found at 09:00 AM on February 5, 2024, but the

deployment to resolve the issue did not occur until

3:00 PM on the same day

The analysis of incident response behaviors reveals several systemic gaps

that contributed to prolonged incident resolution times. The most frequent issue was

delayed incident reporting, which appeared in at least four separate incidents. In

multiple cases, incidents were already detected but not immediately escalated to the

incident support channel. Another recurring issue was slow incident resolution,

where teams took excessive time between identifying the root cause and deploying

a fix. This often stemmed from delays in debugging, fixing deployment, and testing

before release. Additionally, a notable issue was a lack of post-fix monitoring,

where teams deployed fixes but did not actively monitor the impact, leading to

recurring failures. One incident remained unresolved for 11 days after an initial fix

was rolled out. These findings indicate several process inefficiencies in the incident

response workflow, including timeliness of reporting, debugging speed, and post-

resolution validation.

The findings of this study highlight systemic weaknesses in the studied

fintech company’s incident and change control processes, particularly in change

validation, detection mechanisms, and response efficiency. The high frequency of

incidents triggered by internal changes underscores the lack of sufficient preventive

controls in testing and deployment. Additionally, gaps in automated monitoring led

to a heavy reliance on manual detection. This significantly prolongs the Mean Time

to Detect (MTTD). Once detected, inefficient escalation and debugging processes

further delayed Mean Time to Resolution (MTTR), increasing operational and

financial risks. These patterns indicate that while the organization has an

established incident management framework, the lack of standardized enforcement

mechanisms, automation, and proactive strategies leaves the system vulnerable to

recurring failures.

These observations align with existing research on software reliability and

IT incident management. Studies have shown that inadequate testing and

misconfigurations lead to system failures. For instance (Yuan et, 2014), analyzed

large-scale distributed system failures and found that misconfigurations caused

23% of outages, while 58% of catastrophic failures could have been prevented

through simple pre-release testing. This underscores the need for stronger validation

Eduvest – Journal of Universal Studies

Volume 5, Number 4, April, 2025

4270 http://eduvest.greenvest.co.id

mechanisms before deployment. One potential improvement is to mandate a

quarterly review of automated test coverage to identify critical business flows

missing from test scenarios. Additionally, integrating these automated tests into the

deployment pipeline can help ensure that production releases only proceed if all

tests pass successfully. This aligns with the Service Validation and Testing

framework of the Information Technology Infrastructure Library (ITIL) (Axelo,

2019), emphasizing pre-deployment verification to minimize failure risks.

Beyond testing deficiencies, deployment and change control gaps were

another major source of incidents. Multiple failures were caused by insufficient

change approvals, where modifications were merged without code owner or product

owner validation. A widely adopted solution is the Code Owners feature, available

in version control platforms including GitHub, GitLab, and Bitbucket (Neville-

O’Neill, 2023). It helps to prevent merging changes unless explicitly reviewed by

designated owners. Studies have shown that clear code ownership improves

software quality and reduces defects, and integrating code review activities further

enhances these benefits (Bird et, 2011; Greiler et, 2015; Thongtanunam et, 2016) .

Another deployment-related issue was human error in change tracking.

Manual deployment logs resulted in unreviewed modifications being released

unintentionally. Organizations should consider automating deployment change log

generation within the CI/CD pipeline to mitigate this. Logs can be auto-generated

by comparing release tags with the live production state, ensuring that all changes

are explicitly reviewed before rollout. Furthermore, adopting progressive

deployment strategies, such as canary releases, can help detect anomalies before

full-scale rollout. Companies like Google and Facebook have successfully

leveraged these techniques to maintain high availability and stability during

deployments (M. D. P. et al., 2023; T. S. et al., 2016).

Detection gaps were another key factor contributing to prolonged incident

durations. 69% of major incidents were detected manually, through customer

complaints, partner notifications, or employee observations, rather than automated

alerts. Studies have emphasized that effective incident detection relies on real-time

monitoring of key business and system health indicators (H. W. et al., 2024)Based

on this study's findings, standardized alerts can help reduce MTTD. Table 5 shows

the baseline alert that each service should have, particularly in a fintech company.

Table 5. Baseline Alert Standards for Incident Detection

Category Required Alert Type Justification

Business Impact

Metrics

Drop in Successful

Transactions per

Product Type, Payment

Method, and Partner

Many incidents were detected late

because no alert was in place to track

sudden drops in success rates. This

should be standardized across all

financial transactions.

System

Performance

High CPU Utilization

Alert, High Latency,

High Error Rate

A previous incident revealed that CPU

usage spiked but was not detected due to

missing alerts, delaying response times.

Faris Arifiansyah, Yuanita Handayati

Analyzing Systemic Failures in IT Incident Management: Insights from Post-Mortem
Analysis 4271

External

Dependencies

Partner API Response

Time & Error Rate

Third-party partner failures are a

recurring issue. All partner integrations

must implement automatic monitoring

for slow response times or increased

failure rates.

Infrastructure

Health

Database Query

Execution Time Spikes,

Database High CPU

Utilization, Message

Queue High Consumer

Lag

Multiple incidents were caused by slow

queries, DB locks, or replication lag,

which should trigger real-time alerts.

Incident response inefficiencies further exacerbated resolution times. Delayed

incident reporting and slow debugging were observed in multiple cases. Research

has demonstrated that structured on-call escalation procedures help accelerate

response times (P. C. et al., 2012). Organizations like Netflix conduct failure

injection drills, simulating outages to train engineers in real-time troubleshooting,

reducing resolution delays during actual incidents (Alvaro, 2016). Fintech

companies could adopt similar approaches to enhance incident response readiness.

While automation offers promising solutions, full-scale adoption of AI-

driven solutions such as AIOps requires substantial investment in infrastructure and

expertise. Studies have found that AIOps implementations reduce MTTD and

MTTR by enabling predictive analytics and automated incident resolution (Z. C. et

al., 2020; Tian, 2025). However, challenges such as false positives, algorithmic

bias, and the need for human intervention remain (Tian, 2025)A more pragmatic

approach for fintech companies would be to improve their structured incident

escalation processes before considering AI-driven automation.

CONCLUSION

This study analyzed 26 post-mortem reports from a fintech organization

(August 2023–2024) to identify root causes of significant IT incidents, revealing

that 80% stemmed from internal changes due to inadequate testing, weak

deployment controls, and misconfigured production settings, while 69% lacked

proactive alerting, delaying detection. The research highlights systemic gaps in

incident management, including slow escalations and insufficient post-fix

monitoring, and proposes solutions such as stricter change validation, progressive

deployment strategies, automated checks, and standardized alerting baselines to

reduce disruptions. Although limited by reliance on documented post-mortems,

which may omit informal coordination challenges, the findings offer actionable

insights for fintechs to strengthen incident prevention and response, with future

research directions including AI-driven resolution and organizational behavior

analysis.

REFERENCES
Aceto et, al. G. (2018). A comprehensive survey on internet outages. Journal of Network

and Computer Applications, 113, 36–63. https://doi.org/10.1016/j.jnca.2018.03.026

Eduvest – Journal of Universal Studies

Volume 5, Number 4, April, 2025

4272 http://eduvest.greenvest.co.id

al., H. W. et. (2024). Anomaly detection for incident response at scale.

https://doi.org/https://arxiv.org/abs/2404.16887

al., M. D. P. et. (2023). Refining a software system deployment process model through

empirical studies. J Comput Sci Technol, 23(1), e06.

https://doi.org/10.24215/16666038.23.e06

al., P. C. et. (2012). Computer security incident handling guide: Recommendations of the

National Institute of Standards and Technology. Gaithersburg, MD.

https://doi.org/10.6028/NIST.SP.800-61r2

al., S. K. et. (2018). Indonesia’s fintech industry is ready to rise. BCG.

https://doi.org/https://www.bcg.com/publications/2023/fintech-industry-indonesia-

growth

al., T. S. et. (2016). Continuous deployment at Facebook and OANDA. 38th International

Conference on Software Engineering Companion, 21–30.

https://doi.org/10.1145/2889160.2889223

al., Z. C. et. (2020). Towards intelligent incident management: why we need it and how we

make it. Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, 1487–1497. https://doi.org/10.1145/3368089.3417055

Alvaro, al. P. et. (2016). Automating Failure Testing Research at Internet Scale. Seventh

ACM Symposium on Cloud Computing, 17–28.

https://doi.org/10.1145/2987550.2987555

Axelo. (2019). ITIL 4: Foundation (4th ed. (ed.)). AXELOS.

Bird et, al. C. (2011). Don’t touch my code! examining the effects of ownership on

software quality. 19th ACM SIGSOFT symposium and the 13th European conference

on Foundations of software engineering, 4–14.

https://doi.org/10.1145/2025113.2025119

Brown, A. (2018). Facebook lost about $65 million during hours-long outage. Forbes.

https://doi.org/https://www.forbes.com/sites/abrambrown/2021/10/05/facebook-

outage-lost-revenue/

Carpenter, G. (2024). A closer look: unveiling the global impact of crowdstrike event.

https://doi.org/https://www.guycarp.com/content/dam/guycarp-rebrand/insights-

images/2024/07/2024-8-1-Unveiling-the-Global-Impact-of-CrowdStrike-Event.pdf

Clarke, V. B. and V. (2006). Using thematic analysis in psychology. Qual Res Psychol,

3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

E. Kapel D. Spinellis, and A. Van Deursen, L. C. (2024). On the difficulty of identifying

incident-inducing changes. 46th International Conference on Software Engineering:

Software Engineering in Practice, 36–46. https://doi.org/10.1145/3639477.3639755

Efunniyi, A. G. A. C. P., Akwawa, L. A., Azubuko, C. F., & Sanyaolu, T. O. (2022).

Optimizing systems integration for enhanced transaction volumes in Fintech. Finance

& Accounting Research Journal, 4(5), 345–363.

https://doi.org/10.51594/farj.v4i5.1511

Greiler et, al. M. (2015). Code ownership and software quality: a replication study. 12th

Working Conference on Mining Software Repositories, 2–12.

Gunawi et, al. H. S. (2016). Why does the cloud stop computing? Proceedings of the

Seventh ACM Symposium on Cloud Computing, 1–16.

https://doi.org/10.1145/2987550.2987583

ITIC. (2017). Average cost per hour of server downtime worldwide in 2017, by vertical

industry (in million U.S. dollars).

https://doi.org/https://www.statista.com/statistics/780699/worldwide-server-hourly-

downtime-cost-vertical-industry/

Faris Arifiansyah, Yuanita Handayati

Analyzing Systemic Failures in IT Incident Management: Insights from Post-Mortem
Analysis 4273

Kapel, E. (2023). Incident prevention through reliable changes deployment. 2023

IEEE/ACM 45th International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion), 200–202. https://doi.org/10.1109/ICSE-

Companion58688.2023.00055

Lee, J. (2020). Here’s how many millions in ad revenue facebook could have lost during

outage. https://doi.org/https://www.snopes.com/news/2021/10/04/facebook-ad-

revenue/

Murthy, S. G. and K. (2016). Understanding the role of change in incident prevention. 2016

12th International Conference on Network and Service Management (CNSM), 268–

271. https://doi.org/10.1109/CNSM.2016.7818430

Neville-O’Neill, B. (2023). A modern guide to CODEOWNERS. Aviator.

https://doi.org/https://www.aviator.co/blog/a-modern-guide-to-codeowners

Saul, D. (2023). Crowdstrike stock tanks 15%—set for worst day since 2022. Forbes.

https://doi.org/https://www.forbes.com/sites/dereksaul/2024/07/19/crowdstrike-

stock-tanks-15-set-for-worst-day-since-2022/

Simon, A. L. and L. (2023). Annual outages analysis 2023.

Standardization, I. O. for. (2018). Information technology — service management — part

1: service management system requirements (ISO/IEC Standard No. 20000-1:2018).

Geneva.

Thongtanunam et, al. P. (2016). Revisiting code ownership and its relationship with

software quality in the scope of modern code review. 38th International Conference

on Software Engineering, 1039–1050. https://doi.org/10.1145/2884781.2884852

Tian, Y. Y. (2025). Analyzing the effectiveness of automated incident response

mechanisms in reducing downtime and improving service reliability in large-scale

distributed systems. International Journal of Site Reliability Engineering (IJOSRE),

6(1), 1–10. https://doi.org/10.5281/zenodo.14799653

Varpio, M. E. K. and L. (2020). Thematic analysis of qualitative data: AMEE Guide No.

131. Med Teach, 42(8), 846–854. https://doi.org/10.1080/0142159X.2020.1755030

Yuan et, al. D. (2014). Simple testing can prevent most critical failures: an analysis of

production failures in distributed data-intensive systems. Proceedings of the 11th

USENIX Conference on Operating Systems Design and Implementation, 249–265.

https://doi.org/10.5555/2685048.2685068

