The In silico Study: Curcumin Potential As A Topoisomerase Enzyme Inhibitor in The Replication Process of Plasmodium Falciparum That Causes Cerebral Malaria

Authors

  • Any Fira Safitri Fakultas Kedokteran, Universitas Hang Tuah, Indonesia
  • Risma Fakultas Kedokteran, Universitas Hang Tuah, Indonesia
  • Olivia Mahardani Adam Fakultas Kedokteran, Universitas Hang Tuah, Indonesia
  • Danny W. Danandjaja Fakultas Kedokteran, Universitas Hang Tuah, Indonesia

DOI:

https://doi.org/10.59188/eduvest.v5i1.50044

Keywords:

Plasmodium falciparum, Curcuma longa, Topoisomerase enzyme, turmeric

Abstract

Turmeric (Curcuma longa) contains the active compound curcumin, which has antiprotozoal, antimalarial, anti-inflammatory effects. This study aims to ignite the potential of curcumin, which has the potential as an antiprotozoal through inhibition of Plasmodium Falciparim replication through the topoisomerase enzyme. The method used in this study is the One Shot Experimental Study, with several stages including preparation of active compounds, prediction of active substance binding energy, prediction of compound binding, molecular docking, prediction of ADME (absorption, distribution, metabolism, excretion) and toxicity. The results show that curcumin binds to the same site as Artemisinin, both also interact with the topoisomerase VI protein and provide similar inhibitory effects. ADME predictions show that curcumin has good potential for use as an oral drug, with both LD50s included in class 4. The binding affinity and bioactivity of curcumin are lower than Artemisinin but are still considered to have the potential as a safer antiprotozoal alternative.

References

Belay, A. K., Asale, A., Sole, C. L., Yusuf, A. A., Torto, B., Mutero, C. M., & Tchouassi, D. P. (2024). Feeding habits and malaria parasite infection of Anopheles mosquitoes in selected agroecological areas of Northwestern Ethiopia. Parasites & Vectors, 17(1), 412.

Habibi, P., Shi, Y., Fatima Grossi-de-Sa, M., & Khan, I. (2022). Plants as sources of natural and recombinant antimalaria agents. Molecular Biotechnology, 64(11), 1177–1197.

Jabeen, N., Munir, F., Riaz, F., ul ain Arshad, N., & Tahir, S. (2024). Human malarial parasite plasmodium: An overview.

Jamil, M., Salam, A., Benher, B. J., Nasiri, N., & Chaudhary, A. J. (2023). A Case of Acute Liver Failure Due to Artemisinin-Derived Herbal Supplements. Cureus, 15(3).

Jawale, S. S. (n.d.). Plasmodium Vivax-The Malaria Parasite. Avenues in Life Science, 91.

Kogan, F., & Kogan, F. (2020). Malaria burden. Remote Sensing for Malaria: Monitoring and Predicting Malaria from Operational Satellites, 15–41.

Kumpitak, C., Duangmanee, A., Thongyod, W., Rachaphaew, N., Suansomjit, C., Manopwisedjaroen, K., Aung, P. L., Imad, H. A., Cui, L., & Sattabongkot, J. (2024). Human-to-Anopheles dirus mosquito transmission of the anthropozoonotic malaria parasite, Plasmodium knowlesi. Parasites & Vectors, 17(1), 415.

Markwalter, C. F., Lapp, Z., Abel, L., Kimachas, E., Omollo, E., Freedman, E., Chepkwony, T., Amunga, M., McCormick, T., & Bérubé, S. (2024a). Mosquito and human characteristics influence natural Anopheline biting behavior and Plasmodium falciparum transmission. MedRxiv, 2001–2024.

Markwalter, C. F., Lapp, Z., Abel, L., Kimachas, E., Omollo, E., Freedman, E., Chepkwony, T., Amunga, M., McCormick, T., & Bérubé, S. (2024b). Plasmodium falciparum infection in humans and mosquitoes influence natural Anopheline biting behavior and transmission. Nature Communications, 15(1), 4626.

Monroe, A., Williams, N. A., Ogoma, S., Karema, C., & Okumu, F. (2022). Reflections on the 2021 World Malaria Report and the future of malaria control. Malaria Journal, 21(1), 154.

Setiawan, T., Ambarsari, L., & Sumaryada, T. I. (2016). Studi In Silico Converse Region Etoposite Binding Domain pada Isozim Human DNA Topoisomerase II. Cakra Kimia Indonesian E-Journal of Applied Chemistry, 4(1).

Takken, W., Charlwood, D., & Lindsay, S. W. (2024). The behaviour of adult Anopheles gambiae, sub-Saharan Africa’s principal malaria vector, and its relevance to malaria control: a review. Malaria Journal, 23(1), 161.

van Der Pluijm, R. W., Tripura, R., Hoglund, R. M., Phyo, A. P., Lek, D., Ul Islam, A., Anvikar, A. R., Satpathi, P., Satpathi, S., & Behera, P. K. (2020). Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. The Lancet, 395(10233), 1345–1360.

CDC. 2023. DPDx - Laboratory Identification of Parasites of Public Health Concern[Online].CDC.Available:https://www.cdc.gov/dpdx/malaria/ind¬e¬x¬.html. accessed on May 11, 2024.

Jain, K., Sood, S., and Gowthamarajan, K. (2013). Modulation of cerebral malaria by curcumin as an adjunctive therapy. Braz J Infect Dis. 17(5), 579-91. doi: 10.1016/j.bjid.2013.03.004

World Health Organization. (2021). World Malaria Report 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020

World Health Organization. World Malaria Report 2020. from WHO Press

Downloads

Published

2025-01-20

How to Cite

Safitri, A. F., Risma, R., Adam, O. M. ., & Danandjaja, D. W. . (2025). The In silico Study: Curcumin Potential As A Topoisomerase Enzyme Inhibitor in The Replication Process of Plasmodium Falciparum That Causes Cerebral Malaria. Eduvest - Journal of Universal Studies, 5(1), 628–638. https://doi.org/10.59188/eduvest.v5i1.50044