Predictive Analytics of Rural Bank Quality Credit

Authors

  • Rayza Prandipa Sekolah Interdisiplin Manajemen Dan Teknologi Institut Teknologi Sepuluh Nopember, Indonesia
  • Dedy Dwi Prastyo Sekolah Interdisiplin Manajemen Dan Teknologi Institut Teknologi Sepuluh Nopember, Indonesia

DOI:

https://doi.org/10.59188/eduvest.v5i2.50826

Keywords:

Rural Banks, Predictive Analytics, Credit Quality, Ordinal Logistic Regression

Abstract

Credit is the main business of rural banks. Credit distribution cannot be separated from the risk of default by the debtor which has an impact on reducing credit quality. Worsening credit quality has the potential to reduce bank income because the bank's main income comes from loan interest income. Apart from that, worsening credit quality also has an impact on increasing the burden of provisions for losses on productive assets. One effort that can be made to minimize credit risk is to predict credit quality so that you can identify early the potential for a decline in credit quality. This research aims to obtain significant features that influence credit quality at Rural Banks and to predict credit quality classification at rural banks. The method used in this research is Ordinal Logistic Regression which will then be evaluated using ROC (Receiver Operating Characteristic) and AUC (Area Under Curve). The research results show that the best model for predicting credit quality uses all X variables, both credit information and debtor information, with an AUC value of 0.90 and a prediction accuracy of 93.44%.

References

Agresti, A. 2002. Categorical Data Analysis (2nd ed.). NewJersey: John Wiley & Sons

Agresti, A., 2010. Analysis of Ordinal Categorical Data. 2nd ed. New York: John Wiley & Sons, Inc.

Agresti, A., 2012. Categorical Data Analysis. 3rd ed. New York: John Wiley & Sons, Inc.

Alzamora, G. S., Aceituno-Rojo, M. R., Ivan, H. & Condori-Alejo, 2022. An Assertive Machine Learning Model for Rural Micro Credit Assesment in Peru. Procedia Computer Science, Volume 202, pp. 301 - 306.

Anon., 2023. Undang Undang No.4 Tahun 2023 tentang Pengembangan dan Penguatan Sektor Keuangan. s.l.:s.n.

Ari, E. & Yildiz, Z., 2014. Pararel Lines Assumption In Ordinal Logistic Regression and Analysis Approaches. International Interdisciplinary Journal of Scientific Research, Volume 1, pp. 8 - 23.

Arora, S., Bindra, S., Singh, S. & Nass, V. K., 2022. Prediction of Credit Card Defaults Through Data Analysis and Machine Learning Techniques. Materials Today : Proceedings, Volume 51, pp. 110 - 117.

Ataman, M. G. & Sariyer, G., 2021. Predicting Waiting and Treatment Times in Emergency Departments Using Ordinal Logistic Regression Models. American Journal of Emergency Medicine, Volume 46, pp. 45-50.

Fawcett, Tom. 2006. Introduction to ROC analysis. Pattern Recognition Letters. 27. 861-874. 10.1016/j.patrec.2005.10.010.

Hosmer, David W., Lemeshow, Stanley. (2000). Applied logistic regression (ed.2.). Canada: John Wiley rn Sons.

Hosmer Jr., D.W., Lemeshow, S. and Sturdivant, R.X. (2013) Applied Logistic Regression. 3rd Edition, John Wiley & Sons, Hoboken, NJ.

Kadkhodaei, M., Shad, R., Ziaee, S. A. & Kadkhodaei, M., 2023. Prediction model for drivers’ tendency to perpetrate a double parking violation on urban trips. Transport Policy, Volume 141, pp. 331 - 339.

Koletsi, D. & Pandis, N., 2018. Ordinal Logistic Regression. American Journal of Orthodontics and Dentofacial Orthopedics, Volume 153, pp. 157-158.

Lall, R., 2004. The Application of Ordinal Regression Models in Quality of Life Scales Used in Gerontology, s.l.: Departemen of General Practice and Primary Care University of Sheffield.

Otoritas Jasa Keuangan, 2015. Peraturan Otoritas Jasa Keuangan No.5/POJK.03/2015 tentang Kewajiban Penyediaan Modal Minimum dan Pemenuhan Modal Inti Minimum BPR. Jakarta: Otoritas Jasa Keuangan.

Otoritas Jasa Keuangan, 2019. Surat Edaran Otoritas Jasa Keuangan No.1/SEOJK.03/2019 tentang Penerapan Manajemen Risiko bagi BPR. Jakarta: Otoritas Jasa Keuangan.

Otoritas Jasa Keuangan, 2020. Peraturan Otoritas Jasa Keuangan No.12/POJK.03/2020 tentang Konsolidasi Bank Umum. Jakarta: Otoritas Jasa Keuangan.

Otoritas Jasa Keuangan, 2023. Statitik Perbankan Indonesia Desember 2023, Jakarta: Otoritas Jasa Keuangan.

Otoritas Jasa Keuangan, 2024. Peraturan Otoritas Jasa Keuangan No.1 Tahun 2024 tentang Kualitas Aset Bank Perekonomian Rakyat. Jakarta: Otoritas Jasa Keuangan.

Pang, P. S., Hou, X. & Xia, L., 2021. Borrowers’ Credit Quality Scoring Model and Applications, with Default Discriminant Analysis Based on the Extreme Learning Machine. Technological Forecasting & Social Change, Volume 165, p. 120462.

Piciullo, Luca & Gariano, Stefano Luigi & Melillo, Massimo & Brunetti, Maria & Peruccacci, Silvia & Guzzetti, Fausto & Calvello, Michele. (2017). Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides. 14. 995-1008.

Puspita, Ella. 2015. Analisis Regresi Logistik Ordinal pada Faktor Resiko yang Mempengaruhi Tingkat Keparahan Korban Kecelakaan Lalu Lintas di Kota Surabaya. Skripsi tidak dipublikasikan. Surabaya: Institut Teknologi Sepuluh Nopember Surabaya.

Setiawan, N., Suharjito & Diana, 2019. A Comparison of Prediction Methods for Credit Default on Peer to Peer Lending using Machine Learning. Procedia Computer Science, Volume 157, pp. 38-45.

Stewart, G. et al., 2019. Predicting Mental Health Help Seeking Orientations Among Diverse Undergraduates: An Ordinal Logistic Regression Analysis. Journal of Affective Disorders, Volume 257, pp. 271 - 280.

Vuk, Miha & Curk, Tomaž. (2006). ROC curve, lift chart and calibration plot. Metodološki Zvezki. 3. 89-108. 10.51936/noqf3710.

Widyadhana, K. N. & Prastyo, D. D., 2022. Credit Card Default Prediction Using Machine Learning. Motip 03.

Yesilnacar, E. and Topal, T. (2005) Landslide Susceptibility Mapping: A Comparison of Logistic Regression and Neural Networks Methods in a Medium Scale Study, Hendek Region (Turkey). Engineering Geology, 79, 251-266.

Younis, R. & Knight, M. A., 2010. A Probability Model for Investigating the Trend of Structural Deterioration of Wastewater Pipelines. Tunnelling and Underground Space Technology, Volume 25, pp. 670 - 680.

Zou, K. H., O'Malley, A. J., & Mauri, L. (2007). Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 115(5), 654–657.

Downloads

Published

2025-02-20

How to Cite

Prandipa, R., & Prastyo, D. D. . (2025). Predictive Analytics of Rural Bank Quality Credit. Eduvest - Journal of Universal Studies, 5(2), 1930–1941. https://doi.org/10.59188/eduvest.v5i2.50826